在MEMS微纳加工领域,公司通过“材料创新+工艺突破”双轮驱动,为医疗健康、生物传感等场景提供高精度、定制化的微纳器件解决方案。公司依托逾700平米的6英寸MEMS产线,可加工玻璃、硅片、PDMS、硬质塑料等多种基材的微纳结构,覆盖从纳米级(0.5-5μm)到百微米级(10-100μm)的尺度需求。其**技术包括深硅刻蚀、亲疏水改性、多重转印工艺等,能够实现复杂三维微流道、高深宽比微孔阵列及柔性电极的精密成型,满足脑机接口、类***电生理研究、微针给药等前沿医疗应用的严苛要求。MEMS制作工艺-太赫兹脉冲辐射探测。中国香港MEMS微纳米加工设备工程

微纳结构的多图拼接测量技术:针对大尺寸微纳结构的完整表征,公司开发了多图拼接测量技术,结合SEM与图像算法实现亚微米级精度的全景成像。首先通过自动平移台对样品进行网格扫描,获取多幅局部SEM图像(分辨率5nm,视野范围10-100μm);然后利用特征点匹配算法(如SIFT/SURF)进行图像配准,误差<±2nm/100μm;通过融合算法生成完整的拼接图像,可覆盖10mm×10mm区域。该技术应用于微流控芯片的流道检测时,可快速识别全长10cm流道内的微小缺陷(如5μm以下的毛刺或堵塞),检测效率较单图测量提升10倍。在纳米压印模具检测中,多图拼接可精确分析100μm×100μm范围内的结构一致性,特征尺寸偏差<±1%。公司自主开发的拼接软件支持实时预览与缺陷标记,输出包含尺寸标注、粗糙度分析的检测报告,为微纳加工的质量控制提供了高效工具,尤其适用于复杂三维结构与大面积阵列的计量需求。中国香港MEMS微纳米加工设备工程太赫兹柔性电极以 PI 为基底构建双面结构,适用于非侵入式生物检测与材料无损探测。

MEMS技术的主要分类:传感MEMS技术是指用微电子微机械加工出来的、用敏感元件如电容、压电、压阻、热电耦、谐振、隧道电流等来感受转换电信号的器件和系统。它包括速度、压力、湿度、加速度、气体、磁、光、声、生物、化学等各种传感器,按种类分主要有:面阵触觉传感器、谐振力敏感传感器、微型加速度传感器、真空微电子传感器等。传感器的发展方向是阵列化、集成化、智能化。由于传感器是人类探索自然界的触角,是各种自动化装置的神经元,且应用领域大,未来将备受世界各国的重视。
SU8微流控模具加工技术与精度控制:SU8作为负性光刻胶,广泛应用于6英寸以下硅片、石英片的单套或套刻微流控模具加工,可实现5-500μm高度的三维结构制造。加工流程包括:基板清洗→底涂处理→SU8涂胶(转速500-5000rpm,控制厚度1-500μm)→前烘→曝光(紫外光强度50-200mJ/cm²)→后烘→显影(PGMEA溶液,时间1-10分钟)。通过优化曝光剂量与显影时间,可实现侧壁垂直度>88°,**小线宽10μm,高度误差<±2%。在多层套刻加工中,采用对准标记视觉识别系统(精度±1μm),确保上下层结构偏差<5μm,适用于复杂三维流道模具制备。该模具可用于PDMS模塑成型,复制精度达95%以上,流道表面粗糙度Ra<100nm。典型应用如细胞培养芯片模具,其微柱阵列(直径50μm,高度200μm,间距100μm)可模拟细胞外基质环境,促进干细胞定向分化,细胞黏附率提升40%。公司具备从模具设计、加工到复制成型的全链条能力,支持SU8与硅、玻璃等多种基板的复合加工,为微流控芯片开发者提供了高精度、高性价比的模具解决方案。有哪些较为前沿的MEMS传感器的供应厂家?

太赫兹柔性电极的双面结构设计与加工:太赫兹柔性电极以PI为基底,采用双面结构设计,上层实现太赫兹波发射/接收,下层集成信号处理电路,解决了传统刚性太赫兹器件的便携性难题。加工工艺包括:首先在双面抛光的PI基板上,利用电子束光刻制备亚微米级金属天线阵列(如蝴蝶结、螺旋结构),特征尺寸达500nm,周期1-2μm,实现对0.1-1THz频段的高效耦合;背面通过薄膜沉积技术制备氮化硅绝缘层,溅射铜箔形成共面波导传输线,线宽控制精度±10nm,特性阻抗匹配50Ω。电极整体厚度<50μm,弯曲状态下信号衰减<3dB,适用于人体安检、非金属材料检测等场景。在生物医学领域,太赫兹柔性电极可非侵入式检测皮肤水分含量,分辨率达0.1%,检测时间<1秒,较传统电阻法精度提升5倍。公司开发的纳米压印技术实现了天线阵列的低成本复制,单晶圆(4英寸)产能达1000片以上,良率>85%,推动太赫兹技术从实验室走向便携式设备,为无损检测与生物传感提供了全新维度的解决方案。磁传感器和MEMS磁传感器有什么区别?中国香港MEMS微纳米加工特征
MEMS的超透镜是什么?中国香港MEMS微纳米加工设备工程
弧形柱子点阵的微纳加工技术:弧形柱子点阵结构在细胞黏附、流体动力学调控中具有重要应用,公司通过激光直写与反应离子刻蚀(RIE)技术实现该结构的精密加工。首先利用激光直写系统在光刻胶上绘制弧形轨迹,**小曲率半径可达5μm,线条宽度10-50μm;然后通过RIE刻蚀硅片或石英基板,刻蚀速率50-200nm/min,侧壁弧度偏差<±2°。柱子高度50-500μm,间距20-100μm,阵列密度可达10⁴个/cm²。在细胞培养芯片中,弧形柱子表面通过RGD多肽修饰,促进成纤维细胞沿曲率方向铺展,细胞取向率提升70%,用于肌腱组织工程研究。在微流控芯片中,弧形柱子阵列可降低流体阻力30%,减少气泡滞留,适用于高通量液滴生成系统,液滴尺寸变异系数<5%。公司开发的弧形结构设计软件,支持参数化建模与加工路径优化,将设计到加工的周期缩短至3个工作日。该技术突破了传统直柱结构的局限性,为仿生微环境构建与流体控制提供了灵活的设计空间,在生物医学工程与微流控器件中具有广泛应用前景。中国香港MEMS微纳米加工设备工程
文章来源地址: http://dzyqj.shopjgsb.chanpin818.com/chuanganqisr/qtcgq/deta_27573806.html
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。