在很长一段时间内,传统的粮库害虫检查方法是依靠人工巡检,用肉眼观察,逐仓筛查的方法,这种方法覆盖面不足且效率低下,筛查一次将耗费工作人员的大量时间精力。随着技术的发展,AI化的筛查逐步采用,通过算法的AI识别实现自动化筛查。方法基于高像素高清摄像机,实时远程监控粮库,一旦发现害虫就能够立即向管理平台发出告警,有效降低巡检成本和压力,提升工作效率。这之中,实现AI识别处理的传感器同样重要,面对复杂的粮库环境,一个高性能能够快速处理数据的图像处理板是关键。Viztra-HE030是采用RK3588开发而成的AI识别模块。成都接口丰富图像识别模块方法

我国西部地区地形复杂、天气多变,许多电网架设在高山流水之间,给电网的巡检维护造成了不小的困难。于是,不同于传统人工巡检的智能化巡检维护开始逐步应用。这种方式采用无人机加智能化机器人,其中无人机承担巡检工作,而智能化机器人进行维护,两者互相配合。无人机搭载智能化吊舱,吊舱内置图像识别传感器,工程师可以通过远程识别、抵近观察等方式,找出问题所在。无人机机动性灵活性十足,能够便捷去到许多人工难以到达的区域,巡检无死角。无人机巡检一次能够抵得上三个人工同时作业,效率成倍提升。成都自主检测图像识别模块方法慧视光电能够深度定制RK339pro系列的目标识别模块。

图像标注广泛应用于智能驾驶、安防巡检、应急救援等领域。尽管社会为领域培养了大量的图像标注人才,但是人工的弊端仍无法完全弥补。近些年随着AI技术的不断发展,机械化的图像标注工作迎来了改变契机,许多利用AI进行图像标注的平台面向大众,成都慧视推出的SpeedDP深度学习算法开发平台就是利用AI训练、部署实现自动化图像标注。它的出现,极大地改变了图像标注行业的现状。传统标注和AI标注的不同在于传统的图像标注需要人工肉眼判断目标,然后进行手动拉框,如此反复。这是一个机械化的动作,久而久之便会使图像标注员产生倦怠,从而影响效率。此外,面对复杂背景下,目标数量众多、重叠等情况,人工拉框也很无力。
识别算法的性能提升依靠大量的图像标注,传统模式下,需要人工对同一识别目标的数据集进行一步一步手动拉框,但是这个过程的痛苦只有做过的人才知道。越多素材的数据集对于算法的提升越有帮助,常规情况下,一个20秒时长30帧的视频就多达两三百张画面需要标注,如果视频时长或者视频的帧速率增加,需要标注的帧画面将会更多。小编曾试过标注一个时长为1分30秒帧速率为60的视频,需要标注的画面竟然多达5000多张,当我标注到500张的时候,整个人都已经麻木,并且出现情绪波动,望着剩下的4500多张待标注画面,看着都头皮发麻,怎么都不想继续了。可见光AI识别模块定制。

成都慧视推出的深度学习算法开发平台SpeedDP,它的主要功能就是帮助进行算法模型的测试验证,进行快速的针对大量数据的AI自动标注,然后提升自身算法能力。在无人机智能炮弹测试验证中,通过对原始算法的模型训练,能够不断评估算法的能力,然后对新的打击数据集目标进行AI自动标注,让算法在学习中不断变得聪明。通过SpeedDP的应用,能够极大减少整个测试验证所需时间,减少人力成本支出,减少项目开发周期,让工程师不再为繁琐的图像标注浪费时间将更多的精力放在更重要的领域。小型化图像识别模块RV1126。成都自主检测图像识别模块方法
无人机锁定跟踪无人机如何做到?成都接口丰富图像识别模块方法
而AI标注则好很多,通过AI算法开发的基本流程,就能够对AI进行深度训练,让其能够像人眼一样对图像上的目标进行判断分类,然后不同目标自动框选标注。这个工作主要是前期的模型训练需要大量时间,而后期的图像标注就很节省时间,通常情况下,一张图片,只需要7-8ms就能够精细标注完成,无论图片上的目标数量和复杂程度,这是人工远不能及的。目前,慧视SpeedDP经过多个版本的迭代,能够支持YOLO系列算法以及YOLOv8算法的分割标注,标注的精度进一步提升。目前我司能够提供完整的针对于人、车、船的标注模型,如果有其他目标标注的需求,则可以自行进行针对性训练。毫无疑问,AI标注的出现能够为企业大量的数据标注工作节省时间,从而节省成本。随着AI的进一步发展,未来传统标注的模式势必会被完全取代。成都接口丰富图像识别模块方法
文章来源地址: http://dzyqj.shopjgsb.chanpin818.com/chuanganqisr/sjtxcgq/deta_27670586.html
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。